Package 'fanplot'

Title: Visualisation of Sequential Probability Distributions Using Fan Charts
Description: Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or values corresponding to percentiles over time. Plots are added to existing graphic devices using the fan function. Users can choose from four different styles, including fan chart type plots, where a set of coloured polygon, with shadings corresponding to the percentile values are layered to represent different uncertainty levels. Full details in R Journal article; Abel (2015) <doi:10.32614/RJ-2015-002>.
Authors: Guy J. Abel [aut, cre]
Maintainer: Guy J. Abel <[email protected]>
License: GPL-2
Version: 4.0.0
Built: 2024-12-27 06:14:04 UTC
Source: https://github.com/guyabel/fanplot

Help Index


Visualisation of Sequential Probability Distributions Using Fan Charts.

Description

Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or values corresponding to percentiles over time. Plots are added to existing graphic devices using the fan function. Users can choose from four different styles, including fan chart type plots, where a set of coloured polygon, with shadings corresponding to the percentile values are layered to represent different uncertainty levels.

Details

Package: fanplot
Type: Package
License: GPL-2

Author(s)

Guy J. Abel

References

Abel, G. J. (2015). fanplot: An R Package for visualising sequential distributions. The R Journal 7 (2) 15–23.


Parameters for MPC CPI Inflation Projections from Q1 2004 to Q4 2013.

Description

Numerical parameters for inflation report of the Bank of England used to specify the probability distributions for forecast charts of CPI inflation. Data formatted from the November 2013 Bank of England Inflation Report.

Usage

data(boe)

Format

A data frame with 512 observations on the following 5 variables.

time0

Publication time of parameters

time

Future time of projected parameter

mode

Central location parameter of split-normal distribution

uncertainty

Uncertainty parameter of split-normal distribution

skew

Skew parameter of split-normal distribution

Details

mode, uncertainty and skew parameters relate to those given in dsplitnorm, where uncertainty is the standard deviation.

Source

Bank of England Inflation Report November 2013. Retrieved from "Parameters for MPC CPI Inflation Projections from February 2004" spreadsheet at:

Can not find copy of speadheet on the Bank of England website anymore, but there is a copy at https://github.com/guyabel/fanplot/tree/master/data-raw/

Examples

##
##Q1 2013
##
#extract data for Q1 2013
y0 <- 2013
boe0<-subset(boe, time0==y0)
k <- nrow(boe0)

#guess work to set percentiles the boe are plotting
p <- seq(0.05, 0.95, 0.05)
p <- c(0.01, p, 0.99)

#estimate percentiles for future time period
pp <- matrix(NA, nrow = length(p), ncol = k)
for (i in 1:k)
  pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i])
pp

#plot cpi
par(mar=rep(2,4))
plot(cpi, type = "l", xlim = floor(c(y0-5, y0+3)), ylim = c(-2, 7), las = 1, 
 col="tomato", lwd=2, xaxt = "n", yaxt = "n")

#backround
rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90")

#fan
pal <- colorRampPalette(c("tomato", "gray90"))
fan(data=pp, probs=p, sim.data=FALSE, start=y0, frequency=4, 
 anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=FALSE)

#aesthetics for boe axis
axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE)
axis(4, at = -2:7, las = 2, tcl = 0.5)
axis(1, at = 2008:2016, tcl = 0.5)
axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2)
abline(h = 2) #cpi target
abline(v = y0 + 1.75, lty = 2) #2 year line


##
##Q4 2013 (coarser fan)
##
#extract data for Q4 2013
y0 <- 2013.75
boe0<-subset(boe, time0==y0)
k <- nrow(boe0)

#guess work at which percentiles the boe are plotting
p <- seq(0.2, 0.8, 0.2)
p <- c(0.05, p, 0.95)
pp <- matrix(NA, nrow = length(p), ncol = k)
for (i in 1:k)
  pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i])
pp

#define prediction intervals for labels
p.int<-p[4:6]-p[3:1]
p.int

#plot cpi
par(mar=rep(2,4))
plot(cpi, type = "l", xlim = c(y0-5, y0+3), ylim = c(-2, 7), las = 1, 
 col="tomato", lwd=2, xaxt = "n", yaxt = "n")

#backround
rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90")

# add fan
pal <- colorRampPalette(c("tomato", "gray90"))
fan(data=pp, probs=p.int, sim.data=FALSE, start=y0, frequency=4,
 anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=pi, nfan=4, type="interval")

#aesthetics for boe axis
axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE)
axis(4, at = -2:7, las = 2, tcl = 0.5)
axis(1, at = 2008:2016, tcl = 0.5)
axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2)
abline(h = 2) #cpi target
abline(v = y0 + 1.75, lty = 2) #2 year line

Percentage Change (over 12 months) of United Kingdom Consumer Price Inflation

Description

Time series of quarterly UK CPI from Q1 1997 to Q3 2013. Data formatted from the October 2013 release of the CPI data by the Office of National Statistics. Q1 are taken from February values, Q2 from May, Q3 from August and Q4 from November.

Usage

data(cpi)

Format

The format is: Time-Series [1:67] from 1997 to 2014: 88.8 89.6 90 90.4 90.3 91.5 91.2 91.7 91.5 92.7 ...

Source

October 2013 CPI data by the Office of National Statistics. Retrieved from "Consumer Price Inflation Reference Tables, October 2013"

Can not find copy of speadsheet on ONS website anymore, but there is a copy at https://github.com/guyabel/fanplot/tree/master/data-raw/

Examples

data(cpi)

The Split Normal Distribution (or 2 Piece Normal Distribution).

Description

Density, distribution function, quantile function and random generation for the split normal distribution with mode equal to mode, uncertainty indicator equal to sd and inverse skewness equal to skew.

Usage

dsplitnorm(x, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL)
psplitnorm(x, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL)
qsplitnorm(p, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL)
rsplitnorm(n, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL)

Arguments

x

Vector of quantiles.

p

Vector of probabilities

n

Number of observations required.

mode

Vector of modes.

sd

Vector of uncertainty indicators.

skew

Vector of inverse skewnewss indicators. Must range between -1 and 1

sd1

Vector of standard deviations for left hand side. NULL by default.

sd2

Vector of standard deviations for right hand side. NULL by default.

Details

If mode, sd or skew are not specified they assume the default values of 0, 1 and 1, respectively. This results in identical values as a those obtained from a normal distribution.

The probability density function is:

f(x;μ,σ1,σ2)=2π(σ1+σ2)e12σ12(xμ)2f(x; \mu, \sigma_1, \sigma_2) = \frac{\sqrt 2}{\sqrt\pi (\sigma_1+\sigma_2)} e^{-\frac{1}{2\sigma_1^2}(x-\mu)^2}

for -Inf<x<μ< x < \mu, and

f(x;μ,σ1,σ2)=2π(σ1+σ2)e12σ22(xμ)2f(x; \mu, \sigma_1, \sigma_2) = \frac{\sqrt 2}{\sqrt\pi (\sigma_1+\sigma_2)} e^{-\frac{1}{2\sigma_2^2}(x-\mu)^2}

for μ<x<\mu < x <Inf, where, if not specified (in sd1 and sd2) σ1\sigma_1 and σ2\sigma_2 are derived as

σ1=σ/(1γ)\sigma_1=\sigma/\sqrt(1-\gamma)

σ2=σ/(1+γ)\sigma_2=\sigma/\sqrt(1+\gamma)

from σ1\sigma_1 is the overall uncertainty indicator sd and γ\gamma is the inverse skewness indicator skew.

Value

dsplitnorm gives the density, psplitnorm gives the distribution function, qsplitnorm gives the quantile function, and rsplitnorm generates random deviates.

The length of the result is determined by n for rsplitnorm, and is the maximum of the lengths of the numerical parameters for the other functions.

The numerical parameters other than n are recycled to the length of the result.

Note

Tested against the fan chart package in MATLAB (http://www.mathworks.de/matlabcentral/fileexchange/27702-fan-chart). Obtained the same results for a set of simple comparisons.

Author(s)

Guy J. Abel

References

Source for all functions based on:

Julio, J. M. (2007). The Fan Chart: The Technical Details Of The New Implementation. Bogota, Colombia. Retrieved from http://www.banrep.gov.co/docum/ftp/borra468.pdf

Examples

x<-seq(-5,5,length=110)
plot(x,dsplitnorm(x),type="l")

#compare to normal density
lines(x,dnorm(x), lty=2, col="red", lwd=5)

#add positive skew
lines(x,dsplitnorm(x, mode=0, sd=1, skew=0.8))

#add negative skew
lines(x,dsplitnorm(x, mode=0, sd=1, skew=-0.5))

#add left and right hand sd
lines(x,dsplitnorm(x, mode=0, sd1=1, sd2=2), col="blue")

#psplitnorm
x<-seq(-5,5,length=100)
plot(x,pnorm(x),type="l")
lines(x, psplitnorm(x, skew=-0.9), col="red")

#qsplitnorm
x<-seq(0,1,length=100)
plot(qnorm(x),type="l",x)
lines(qsplitnorm(x), x, lty=2, col="blue")
lines(qsplitnorm(x, skew=-0.3), x, col="red")

#rsplitnorm
hist(rsplitnorm(n=10000, mode=1, sd=1, skew=0.9),100)

Fan Plot of Distributions Percentiles Over Time.

Description

Visualise sequential distributions using a range of plotting styles.

Usage

fan(data = NULL, data.type="simulations", style = "fan", type = "percentile",
  probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95), 
  start = 1, frequency = 1, anchor = NULL, anchor.time=NULL,
  fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1, 
  n.fan = NULL,
  ln = if(length(probs)<10) probs else 
    probs[round(probs,2) %in% round(seq(0.1, 0.9, 0.1),2)],
  ln.col = if(style=="spaghetti") "gray" else NULL, 
  med.ln = if(type=="interval") TRUE else FALSE, 
  med.col= "orange",
  rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL, 
  llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol, 
  upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL,
  n.spag = 30, 
  space = if(style=="boxplot") 1/frequency else 0.9/frequency, 
  add = FALSE, ylim = range(data)*0.8, ...)
fan0(data = NULL, data.type = "simulations", style = "fan", type = "percentile",
  probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95), 
  start = 1, frequency = 1, anchor = NULL, anchor.time=NULL,
  fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1, 
  n.fan = NULL,
  ln = NULL,
  ln.col = if(style=="spaghetti") "gray" else NULL, 
  med.ln = if(type=="interval") TRUE else FALSE, 
  med.col= "orange",
  rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL, 
  llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol, 
  upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL,
  n.spag = 30, 
  space = if(style=="boxplot") 1/frequency else 0.9/frequency, 
  add = TRUE, ylim = range(data)*0.8, ...)

Arguments

data

Set of sequential simulation data, where rows represent simulation number and columns represent some form of time index. If data.type = "values", data must instead be a set of quantile values by rows for a set of probabilities (which need to be provided in probs and by column for some form of time index.

Data can take multiple classes, where the contents are converted to a matrix. If the input is a mts or zoo, the time series properties will be inherted (and start and frequency arguments will be ignored).

data.type

Indicates if data are sets of pre-calculated values based for defined probabilities data.type = "values" or simulated data data.type = "simulations". That later is the default.

style

Plot style, choose from fan (default), spaghetti boxplot or boxfan. See Examples and Details Sections for further explanation.

type

Type of percentiles to plot in fan or boxfan. Choose from, percentile (default) or interval.

probs

Probabilities related to percentiles or prediction intervals to be plotted (dependent on the type function. These values control the number of shades used in the fan or boxfan. These must be between 0 and 100 (inclusive) or 0 and 1. Percentiles greater than 50 (or 0.5), if not given, are automatically calculated as 100-p, to ensure symmetric fan. Values can be non-integers. Default to single percentile values when type="percetinle" and the 50th, 80th and 95th prediction interval when type="interval" is set.

start

The time of the first distribution in sims. Similar to use in ts.

frequency

The number of distribution in sims per unit of time in sims. Similar to use in ts.

anchor

Optional data value to anchor a forecast fan on. Typically this will be the last observation of the observed data series.

anchor.time

Optional data value for the time of the anchor. Useful for irregular time series.

fan.col

Palette of colours used in the fan or boxfan.

n.fan

The number of colours to use in the fan.

alpha

Factor modifying the opacity alpha; typically in [0,1].

ln

Vector of number to plot contour lines on-top fan or boxfan. Must correspond to calculated percentiles in probs. By default for fan takes either every percentile or prediction interval given in the probs argument (if less then 10) or, when there are more than 10 probs passed, the either every decile or every prediction interval that are a multiple of 10 and given in probs. No lines plotted by default for fan0

med.ln

Add a median line to fan. Might be of particular use if type="interval". Only works when data.type = "simulations" and one of fan, boxfan or spaghetti styles.

ln.col

Line colour to be imposed on top of the fan. By default takes the darkest colour from fan.col argument, unless style="spaghetti"

med.col

Median Line colour. By default this is set to the first colour in fan.col. Users might wish to change to highlight the median.

rlab

Vector of labels at the end (right) of corresponding percentiles or prediction intervals of the fan or boxfan. Must be in calculated in the probs argument. By default plotted alongside values provided to the ln argument.

rpos

Position of right labels for the fan or boxfan. See text.

roffset

Offset of right labels for the fan or boxfan. See text.

rcex

Text size of right labels for the fan or boxfan. See text.

rcol

Colour of text for right labels for the fan or boxfan. See text.

llab

Can take either 1) a TRUE or FALSE value to plot label at the start (right) of the corresponding percentiles or prediction intervals given in rlab, default is FALSE or 2) a original vector of percentiles or prediction intervals. Must be in calculated in the probs argument. Only works for fan or boxfan styles.

lpos

Position of left labels for the fan or boxfan. See text.

loffset

Offset of left labels for the fan or boxfan.By default takes the same value as roffset. See text.

lcex

Text size of left labels for the fan or boxfan. By default takes the same value as rex. See text.

lcol

Colour of text for left labels for the fan or boxfan. By default takes the same value as rcol. See text.

upplab

Prefix character string for upper labels to be used for the fan or boxfan when type="interval".

lowlab

Prefix character string for lower labels to be used for the fan or boxfan when type="interval" .

medlab

Character string for median label.

n.spag

Number of simulations to plot in the spaghetti plot.

space

Space between boxes in the boxfan plot.

add

Add to active plot. By default FALSE for fan and TRUE for fan0.

ylim

Passed to plot when add = TRUE.

...

Additional arguments passed to boxplot for fan and to plot for fan0.

Details

Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or pre-computed values over time (columns). For the later, the user should declare input data as percentiles by setting data.type = "values". Plots are added to existing graphic devices. Users can choose from four different styles.

The fan and boxfan style plot distributions based on used-defined shading scheme, controlled by the fan.col argument. Additional lines and text are added to illustrate major contours on the probability distribution. Lines and labels can be suppressed by adding ln = NULL and rlab = NULL. Labels to the left of the fan can also be specified using the llab argument. Colours are by default taken from the heat.colors palette. Alternatives can be specified using fan.col (see the example below). The joining of a forecast fan to data is controlled be the anchor argument.

The spaghetti style, plots random draws (when data.type = "simulations" is set) along the sequence of distributions. The number of draws is controlled by the n.spag argument. The transparency of the lines is controlled by alpha.

The boxplot style, adds a box plot for simulated data at the appropriate location, according to the start and frquency arguments. Gaps between box plots are controlled by space argument. Additional arguments are passed to boxplot.

Value

See details

Author(s)

Guy J. Abel

References

Abel, G. J. (2015). fanplot: An R Package for visualising sequential distributions. The R Journal 7 (2) 15–23.

Examples

##
## Basic Fan: fan0()
##
fan0(th.mcmc)

##
## Basic Fan: fan()
##
# empty plot
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc)*0.85)

# add fan
fan(th.mcmc)

##
## 20 or so examples of fan charts and
## spaghetti plots based on the th.mcmc object
##
## Make sure you have zoo, tsbugs, RColorBrewer and 
## colorspace packages installed
##
## Not run: 
# demo("sv_fan", "fanplot")

## End(Not run)

##
## Fans for forecasted values
##
## Not run: 
#create time series
net <- ts(ips$net, start=1975)

# fit model
library("forecast")
m <- auto.arima(net)

# plot in forecast package (limited customisation possible)
plot(forecast(m, h=5))

# another plot in forecast (with some customisation, no
# labels or anchoring possible at the moment)
plot(forecast(m, h=5, level=c(50,80,95)), 
     shadecols=rev(heat.colors(3)))

# simulate future values
mm <- matrix(NA, nrow=1000, ncol=5)
for(i in 1:1000)
  mm[i,] <- simulate(m, nsim=5)

# interval fan chart
plot(net, xlim=c(1975,2020), ylim=c(-100,300))
fan(mm, type="interval", start=2013)

# anchor fan chart
plot(net, xlim=c(1975,2020), ylim=c(-100,300))
fan(mm, type="interval", start=2013, 
    anchor=net[time(net)==2012])

# anchor spaghetti plot with underlying fan chart
plot(net, xlim=c(1975,2020), ylim=c(-100,300))
fan(mm, type="interval", start=2013, 
    anchor=net[time(net)==2012], alpha=0, ln.col="orange")
fan(mm, type="interval", start=2013, 
    anchor=net[time(net)==2012], alpha=0.5, style="spaghetti")

## End(Not run)

##
## Box Plots
##
# sample every 21st day of theta_t
th.mcmc21 <- th.mcmc[, seq(1, 945, 21)]
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxplot", frequency = 1/21)

# additional arguments for boxplot
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxplot", frequency = 1/21, 
 outline = FALSE, col = "red", notch = TRUE)

##
## Fan Boxes
##
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxfan", type = "interval", frequency = 1/21)

# more space between boxes
plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21))
fan(th.mcmc21, style = "boxfan", type = "interval", 
 frequency = 1/21, space = 10)

# overlay spaghetti
fan(th.mcmc21, style = "spaghetti", 
 frequency = 1/21, n.spag = 50, ln.col = "red", alpha=0.2)

ONS International Passenger Survey Long-Term International Migration 1975-2012

Description

Immigration, emigration and net migration flow counts (and their confidence intervals) for the UK from the International Passenger Survey (IPS) conducted by the Office of National Statistics. Data formatted from the 2012 release of the Long-Term International Migration Statistics.

Usage

data(ips)

Format

A data frame with 38 observations on the following 7 variables.

year

a numeric vector

imm

a numeric vector

imm.ci

a numeric vector

emi

a numeric vector

emi.ci

a numeric vector

net

a numeric vector

net.ci

a numeric vector

Details

Data differ slightly from the final adjusted migration estimates published by the ONS, that take account of certain types of migration that the IPS doesn't pick up, such as asylum seekers, people migrating for longer or shorter than they thought they would, and migration over land to and from Northern Ireland.

Source

Annual statistics on flows of international migrants to and from the UK and England and Wales by the Office of National Statistics. Retrieved from "1.02 IPS Margins of Error, 1975-2012" spreadsheet.

Can not find copy of speadsheet on ONS website anymore, but there is a copy at https://github.com/guyabel/fanplot/tree/master/data-raw/

Examples

#standard plot
net<-ts(ips$net, start=1975)
plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci))
lines(net+ips$net.ci, lty=2, col="red")
lines(net-ips$net.ci, lty=2, col="red")

#simulate values
ips.sim <- matrix(NA, nrow = 10000, ncol=length(net))
for (i in 1:length(net))
  ips.sim[, i] <- rnorm(10000, mean = ips$net[i], sd =ips$net.ci[i]/1.96)

#spaghetti plot
plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n")
fan(ips.sim, style="spaghetti", start=tsp(net)[1], n.spag=50)

#box plot
plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n")
fan(ips.sim, style="boxplot", start=tsp(net)[1], llab=TRUE, outline=FALSE)

#box fan
plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n")
fan(ips.sim, style="boxfan", type="interval", start=tsp(net)[1])

Pound-Dollar Exchange Rate Data

Description

Pound-Dollar exchange rate data from 2nd October 1981 to 28th June 1985.

Usage

data(svpdx)

Format

A data frame with 945 observations on the following 2 variables.

date

Date of observation.

pdx

Logarithm of returns for Pound-Dollar exchange.

Details

Raw data on log returns.

Source

http://www.econ.vu.nl/koopman/sv/svpdx.dat

References

Meyer, R. and J. Yu (2002). BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 3 (2), 198–215.

Examples

data(svpdx)

# plot
plot(svpdx$pdx, type = "l", xaxt = "n", xlab = "Time", ylab = "Return")

# add x-axis
svpdx$rdate<-format(svpdx$date, format = "%b %Y")
mth <- unique(svpdx$rdate)
qtr <- mth[seq(1,length(mth),3)]
axis(1, at = match(qtr, svpdx$rdate), labels = qtr, cex.axis = 0.75)
axis(1, at = match(mth, svpdx$rdate), labels = FALSE, tcl = -0.2)

1000 MCMC Simulations of Estimated Volatility from Pound Dollar Exchange Rate Data.

Description

MCMC simulations of volatility obtained from the bugs function in the R2OpenBUGS package. Estimates based on the stochastic volatility model for Pound-Dollar exchange rate data presented in the appendix of Meyer and Yu (2002). The MCMC was ran for 1100 simulations, thining to keep every 10th iteration, and treating the first 100 simulations as burn in.

Larger simulations (without thinning) can be obtained using the data (svpdx) and the my1.txt BUGS file contained in this package, see example below.

Details

See Meyer and Yu (2010) for model specification.

References

Meyer, R. and J. Yu (2002). BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 3 (2), 198–215.

Sturtz, S., U. Ligges, and A. Gelman (2005). R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software 12 (3), 1–16.

Examples

# empty plot
plot(NULL, type = "n", xlim = c(1, 945), ylim = range(th.mcmc), ylab = "Theta")

# add fan
fan(th.mcmc)

##
##Create your own (longer) MCMC sample:
##
## Not run: 
# library(tsbugs)
# library(R2OpenBUGS)
# # write model file:
# my1.bug <- dget(system.file("model", "my1.R", package = "fanplot"))
# write.model(my1.bug, "my1.txt")
# # take a look:
# file.show("my1.txt")
# # run openbugs, remember to include theta as a param otherwise will not
# # have anything to plot
# my1.mcmc<-bugs(data=list(n=length(svpdx$pdx),y=svpdx$pdx), 
#                inits=list(list(phistar=0.975,mu=0,itau2=50)),
#                param=c("mu","phi","tau","theta"), 
#                model="my1.txt",
#                n.iter=11000, n.burnin=1000, n.chains=1)
#                
# th.mcmc <- my1.mcmc$sims.list$theta

## End(Not run)