Title: | Visualisation of Sequential Probability Distributions Using Fan Charts |
---|---|
Description: | Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or values corresponding to percentiles over time. Plots are added to existing graphic devices using the fan function. Users can choose from four different styles, including fan chart type plots, where a set of coloured polygon, with shadings corresponding to the percentile values are layered to represent different uncertainty levels. Full details in R Journal article; Abel (2015) <doi:10.32614/RJ-2015-002>. |
Authors: | Guy J. Abel [aut, cre] |
Maintainer: | Guy J. Abel <[email protected]> |
License: | GPL-2 |
Version: | 4.0.0 |
Built: | 2024-12-27 06:14:04 UTC |
Source: | https://github.com/guyabel/fanplot |
Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or values corresponding to percentiles over time. Plots are added to existing graphic devices using the fan function. Users can choose from four different styles, including fan chart type plots, where a set of coloured polygon, with shadings corresponding to the percentile values are layered to represent different uncertainty levels.
Package: | fanplot |
Type: | Package |
License: | GPL-2 |
Guy J. Abel
Abel, G. J. (2015). fanplot: An R Package for visualising sequential distributions. The R Journal 7 (2) 15–23.
Numerical parameters for inflation report of the Bank of England used to specify the probability distributions for forecast charts of CPI inflation. Data formatted from the November 2013 Bank of England Inflation Report.
data(boe)
data(boe)
A data frame with 512 observations on the following 5 variables.
time0
Publication time of parameters
time
Future time of projected parameter
mode
Central location parameter of split-normal distribution
uncertainty
Uncertainty parameter of split-normal distribution
skew
Skew parameter of split-normal distribution
mode, uncertainty and skew parameters relate to those given in dsplitnorm
, where uncertainty is the standard deviation.
Bank of England Inflation Report November 2013. Retrieved from "Parameters for MPC CPI Inflation Projections from February 2004" spreadsheet at:
Can not find copy of speadheet on the Bank of England website anymore, but there is a copy at https://github.com/guyabel/fanplot/tree/master/data-raw/
## ##Q1 2013 ## #extract data for Q1 2013 y0 <- 2013 boe0<-subset(boe, time0==y0) k <- nrow(boe0) #guess work to set percentiles the boe are plotting p <- seq(0.05, 0.95, 0.05) p <- c(0.01, p, 0.99) #estimate percentiles for future time period pp <- matrix(NA, nrow = length(p), ncol = k) for (i in 1:k) pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i]) pp #plot cpi par(mar=rep(2,4)) plot(cpi, type = "l", xlim = floor(c(y0-5, y0+3)), ylim = c(-2, 7), las = 1, col="tomato", lwd=2, xaxt = "n", yaxt = "n") #backround rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90") #fan pal <- colorRampPalette(c("tomato", "gray90")) fan(data=pp, probs=p, sim.data=FALSE, start=y0, frequency=4, anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=FALSE) #aesthetics for boe axis axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE) axis(4, at = -2:7, las = 2, tcl = 0.5) axis(1, at = 2008:2016, tcl = 0.5) axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2) abline(h = 2) #cpi target abline(v = y0 + 1.75, lty = 2) #2 year line ## ##Q4 2013 (coarser fan) ## #extract data for Q4 2013 y0 <- 2013.75 boe0<-subset(boe, time0==y0) k <- nrow(boe0) #guess work at which percentiles the boe are plotting p <- seq(0.2, 0.8, 0.2) p <- c(0.05, p, 0.95) pp <- matrix(NA, nrow = length(p), ncol = k) for (i in 1:k) pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i]) pp #define prediction intervals for labels p.int<-p[4:6]-p[3:1] p.int #plot cpi par(mar=rep(2,4)) plot(cpi, type = "l", xlim = c(y0-5, y0+3), ylim = c(-2, 7), las = 1, col="tomato", lwd=2, xaxt = "n", yaxt = "n") #backround rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90") # add fan pal <- colorRampPalette(c("tomato", "gray90")) fan(data=pp, probs=p.int, sim.data=FALSE, start=y0, frequency=4, anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=pi, nfan=4, type="interval") #aesthetics for boe axis axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE) axis(4, at = -2:7, las = 2, tcl = 0.5) axis(1, at = 2008:2016, tcl = 0.5) axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2) abline(h = 2) #cpi target abline(v = y0 + 1.75, lty = 2) #2 year line
## ##Q1 2013 ## #extract data for Q1 2013 y0 <- 2013 boe0<-subset(boe, time0==y0) k <- nrow(boe0) #guess work to set percentiles the boe are plotting p <- seq(0.05, 0.95, 0.05) p <- c(0.01, p, 0.99) #estimate percentiles for future time period pp <- matrix(NA, nrow = length(p), ncol = k) for (i in 1:k) pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i]) pp #plot cpi par(mar=rep(2,4)) plot(cpi, type = "l", xlim = floor(c(y0-5, y0+3)), ylim = c(-2, 7), las = 1, col="tomato", lwd=2, xaxt = "n", yaxt = "n") #backround rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90") #fan pal <- colorRampPalette(c("tomato", "gray90")) fan(data=pp, probs=p, sim.data=FALSE, start=y0, frequency=4, anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=FALSE) #aesthetics for boe axis axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE) axis(4, at = -2:7, las = 2, tcl = 0.5) axis(1, at = 2008:2016, tcl = 0.5) axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2) abline(h = 2) #cpi target abline(v = y0 + 1.75, lty = 2) #2 year line ## ##Q4 2013 (coarser fan) ## #extract data for Q4 2013 y0 <- 2013.75 boe0<-subset(boe, time0==y0) k <- nrow(boe0) #guess work at which percentiles the boe are plotting p <- seq(0.2, 0.8, 0.2) p <- c(0.05, p, 0.95) pp <- matrix(NA, nrow = length(p), ncol = k) for (i in 1:k) pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i]) pp #define prediction intervals for labels p.int<-p[4:6]-p[3:1] p.int #plot cpi par(mar=rep(2,4)) plot(cpi, type = "l", xlim = c(y0-5, y0+3), ylim = c(-2, 7), las = 1, col="tomato", lwd=2, xaxt = "n", yaxt = "n") #backround rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90") # add fan pal <- colorRampPalette(c("tomato", "gray90")) fan(data=pp, probs=p.int, sim.data=FALSE, start=y0, frequency=4, anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=pi, nfan=4, type="interval") #aesthetics for boe axis axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE) axis(4, at = -2:7, las = 2, tcl = 0.5) axis(1, at = 2008:2016, tcl = 0.5) axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2) abline(h = 2) #cpi target abline(v = y0 + 1.75, lty = 2) #2 year line
Time series of quarterly UK CPI from Q1 1997 to Q3 2013. Data formatted from the October 2013 release of the CPI data by the Office of National Statistics. Q1 are taken from February values, Q2 from May, Q3 from August and Q4 from November.
data(cpi)
data(cpi)
The format is: Time-Series [1:67] from 1997 to 2014: 88.8 89.6 90 90.4 90.3 91.5 91.2 91.7 91.5 92.7 ...
October 2013 CPI data by the Office of National Statistics. Retrieved from "Consumer Price Inflation Reference Tables, October 2013"
Can not find copy of speadsheet on ONS website anymore, but there is a copy at https://github.com/guyabel/fanplot/tree/master/data-raw/
data(cpi)
data(cpi)
Density, distribution function, quantile function and random generation for the split normal distribution with mode equal to mode
, uncertainty indicator equal to sd
and inverse skewness equal to skew
.
dsplitnorm(x, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL) psplitnorm(x, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL) qsplitnorm(p, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL) rsplitnorm(n, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL)
dsplitnorm(x, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL) psplitnorm(x, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL) qsplitnorm(p, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL) rsplitnorm(n, mode = 0, sd = 1, skew = 0, sd1 = NULL, sd2 = NULL)
x |
Vector of quantiles. |
p |
Vector of probabilities |
n |
Number of observations required. |
mode |
Vector of modes. |
sd |
Vector of uncertainty indicators. |
skew |
Vector of inverse skewnewss indicators. Must range between -1 and 1 |
sd1 |
Vector of standard deviations for left hand side. |
sd2 |
Vector of standard deviations for right hand side. |
If mode
, sd
or skew
are not specified they assume the default values of 0, 1 and 1, respectively. This results in identical values as a those obtained from a normal distribution.
The probability density function is:
for -Inf
, and
for Inf
, where, if not specified (in sd1
and sd2
) and
are derived as
from is the overall uncertainty indicator
sd
and is the inverse skewness indicator
skew
.
dsplitnorm
gives the density, psplitnorm
gives the distribution function, qsplitnorm
gives the quantile function, and rsplitnorm
generates random deviates.
The length of the result is determined by n
for rsplitnorm
, and is the maximum of the lengths of the numerical parameters for the other functions.
The numerical parameters other than n
are recycled to the length of the result.
Tested against the fan chart package in MATLAB (http://www.mathworks.de/matlabcentral/fileexchange/27702-fan-chart). Obtained the same results for a set of simple comparisons.
Guy J. Abel
Source for all functions based on:
Julio, J. M. (2007). The Fan Chart: The Technical Details Of The New Implementation. Bogota, Colombia. Retrieved from http://www.banrep.gov.co/docum/ftp/borra468.pdf
x<-seq(-5,5,length=110) plot(x,dsplitnorm(x),type="l") #compare to normal density lines(x,dnorm(x), lty=2, col="red", lwd=5) #add positive skew lines(x,dsplitnorm(x, mode=0, sd=1, skew=0.8)) #add negative skew lines(x,dsplitnorm(x, mode=0, sd=1, skew=-0.5)) #add left and right hand sd lines(x,dsplitnorm(x, mode=0, sd1=1, sd2=2), col="blue") #psplitnorm x<-seq(-5,5,length=100) plot(x,pnorm(x),type="l") lines(x, psplitnorm(x, skew=-0.9), col="red") #qsplitnorm x<-seq(0,1,length=100) plot(qnorm(x),type="l",x) lines(qsplitnorm(x), x, lty=2, col="blue") lines(qsplitnorm(x, skew=-0.3), x, col="red") #rsplitnorm hist(rsplitnorm(n=10000, mode=1, sd=1, skew=0.9),100)
x<-seq(-5,5,length=110) plot(x,dsplitnorm(x),type="l") #compare to normal density lines(x,dnorm(x), lty=2, col="red", lwd=5) #add positive skew lines(x,dsplitnorm(x, mode=0, sd=1, skew=0.8)) #add negative skew lines(x,dsplitnorm(x, mode=0, sd=1, skew=-0.5)) #add left and right hand sd lines(x,dsplitnorm(x, mode=0, sd1=1, sd2=2), col="blue") #psplitnorm x<-seq(-5,5,length=100) plot(x,pnorm(x),type="l") lines(x, psplitnorm(x, skew=-0.9), col="red") #qsplitnorm x<-seq(0,1,length=100) plot(qnorm(x),type="l",x) lines(qsplitnorm(x), x, lty=2, col="blue") lines(qsplitnorm(x, skew=-0.3), x, col="red") #rsplitnorm hist(rsplitnorm(n=10000, mode=1, sd=1, skew=0.9),100)
Visualise sequential distributions using a range of plotting styles.
fan(data = NULL, data.type="simulations", style = "fan", type = "percentile", probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95), start = 1, frequency = 1, anchor = NULL, anchor.time=NULL, fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1, n.fan = NULL, ln = if(length(probs)<10) probs else probs[round(probs,2) %in% round(seq(0.1, 0.9, 0.1),2)], ln.col = if(style=="spaghetti") "gray" else NULL, med.ln = if(type=="interval") TRUE else FALSE, med.col= "orange", rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL, llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol, upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL, n.spag = 30, space = if(style=="boxplot") 1/frequency else 0.9/frequency, add = FALSE, ylim = range(data)*0.8, ...) fan0(data = NULL, data.type = "simulations", style = "fan", type = "percentile", probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95), start = 1, frequency = 1, anchor = NULL, anchor.time=NULL, fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1, n.fan = NULL, ln = NULL, ln.col = if(style=="spaghetti") "gray" else NULL, med.ln = if(type=="interval") TRUE else FALSE, med.col= "orange", rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL, llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol, upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL, n.spag = 30, space = if(style=="boxplot") 1/frequency else 0.9/frequency, add = TRUE, ylim = range(data)*0.8, ...)
fan(data = NULL, data.type="simulations", style = "fan", type = "percentile", probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95), start = 1, frequency = 1, anchor = NULL, anchor.time=NULL, fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1, n.fan = NULL, ln = if(length(probs)<10) probs else probs[round(probs,2) %in% round(seq(0.1, 0.9, 0.1),2)], ln.col = if(style=="spaghetti") "gray" else NULL, med.ln = if(type=="interval") TRUE else FALSE, med.col= "orange", rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL, llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol, upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL, n.spag = 30, space = if(style=="boxplot") 1/frequency else 0.9/frequency, add = FALSE, ylim = range(data)*0.8, ...) fan0(data = NULL, data.type = "simulations", style = "fan", type = "percentile", probs = if(type=="percentile") seq(0.01, 0.99, 0.01) else c(0.5, 0.8, 0.95), start = 1, frequency = 1, anchor = NULL, anchor.time=NULL, fan.col = heat.colors, alpha = if (style == "spaghetti") 0.5 else 1, n.fan = NULL, ln = NULL, ln.col = if(style=="spaghetti") "gray" else NULL, med.ln = if(type=="interval") TRUE else FALSE, med.col= "orange", rlab = ln, rpos = 4, roffset = 0.1, rcex = 0.8, rcol = NULL, llab = FALSE, lpos = 2, loffset = roffset, lcex = rcex, lcol = rcol, upplab = "U", lowlab = "L", medlab=if(type == "interval") "M" else NULL, n.spag = 30, space = if(style=="boxplot") 1/frequency else 0.9/frequency, add = TRUE, ylim = range(data)*0.8, ...)
data |
Set of sequential simulation data, where rows represent simulation number and columns represent some form of time index.
If Data can take multiple classes, where the contents are converted to a |
data.type |
Indicates if |
style |
Plot style, choose from |
type |
Type of percentiles to plot in |
probs |
Probabilities related to percentiles or prediction intervals to be plotted (dependent on the |
start |
The time of the first distribution in |
frequency |
The number of distribution in |
anchor |
Optional data value to anchor a forecast fan on. Typically this will be the last observation of the observed data series. |
anchor.time |
Optional data value for the time of the anchor. Useful for irregular time series. |
fan.col |
Palette of colours used in the |
n.fan |
The number of colours to use in the fan. |
alpha |
Factor modifying the opacity alpha; typically in [0,1]. |
ln |
Vector of number to plot contour lines on-top |
med.ln |
Add a median line to fan. Might be of particular use if |
ln.col |
Line colour to be imposed on top of the fan. By default takes the darkest colour from |
med.col |
Median Line colour. By default this is set to the first colour in |
rlab |
Vector of labels at the end (right) of corresponding percentiles or prediction intervals of the |
rpos |
Position of right labels for the |
roffset |
Offset of right labels for the |
rcex |
Text size of right labels for the |
rcol |
Colour of text for right labels for the |
llab |
Can take either 1) a |
lpos |
Position of left labels for the |
loffset |
Offset of left labels for the |
lcex |
Text size of left labels for the |
lcol |
Colour of text for left labels for the |
upplab |
Prefix character string for upper labels to be used for the |
lowlab |
Prefix character string for lower labels to be used for the |
medlab |
Character string for median label. |
n.spag |
Number of simulations to plot in the |
space |
Space between boxes in the |
add |
Add to active plot. By default |
ylim |
Passed to |
... |
Additional arguments passed to |
Visualise sequential distributions using a range of plotting styles. Sequential distribution data can be input as either simulations or pre-computed values over time (columns). For the later, the user should declare input data as percentiles by setting data.type = "values"
. Plots are added to existing graphic devices. Users can choose from four different styles.
The fan
and boxfan
style plot distributions based on used-defined shading scheme, controlled by the fan.col
argument. Additional lines and text are added to illustrate major contours on the probability distribution. Lines and labels can be suppressed by adding ln = NULL
and rlab = NULL
. Labels to the left of the fan can also be specified using the llab
argument. Colours are by default taken from the heat.colors
palette. Alternatives can be specified using fan.col
(see the example below). The joining of a forecast fan to data is controlled be the anchor argument.
The spaghetti
style, plots random draws (when data.type = "simulations"
is set) along the sequence of distributions. The number of draws is controlled by the n.spag
argument. The transparency of the lines is controlled by alpha
.
The boxplot
style, adds a box plot for simulated data at the appropriate location, according to the start
and frquency
arguments. Gaps between box plots are controlled by space
argument. Additional arguments are passed to boxplot
.
See details
Guy J. Abel
Abel, G. J. (2015). fanplot: An R Package for visualising sequential distributions. The R Journal 7 (2) 15–23.
## ## Basic Fan: fan0() ## fan0(th.mcmc) ## ## Basic Fan: fan() ## # empty plot plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc)*0.85) # add fan fan(th.mcmc) ## ## 20 or so examples of fan charts and ## spaghetti plots based on the th.mcmc object ## ## Make sure you have zoo, tsbugs, RColorBrewer and ## colorspace packages installed ## ## Not run: # demo("sv_fan", "fanplot") ## End(Not run) ## ## Fans for forecasted values ## ## Not run: #create time series net <- ts(ips$net, start=1975) # fit model library("forecast") m <- auto.arima(net) # plot in forecast package (limited customisation possible) plot(forecast(m, h=5)) # another plot in forecast (with some customisation, no # labels or anchoring possible at the moment) plot(forecast(m, h=5, level=c(50,80,95)), shadecols=rev(heat.colors(3))) # simulate future values mm <- matrix(NA, nrow=1000, ncol=5) for(i in 1:1000) mm[i,] <- simulate(m, nsim=5) # interval fan chart plot(net, xlim=c(1975,2020), ylim=c(-100,300)) fan(mm, type="interval", start=2013) # anchor fan chart plot(net, xlim=c(1975,2020), ylim=c(-100,300)) fan(mm, type="interval", start=2013, anchor=net[time(net)==2012]) # anchor spaghetti plot with underlying fan chart plot(net, xlim=c(1975,2020), ylim=c(-100,300)) fan(mm, type="interval", start=2013, anchor=net[time(net)==2012], alpha=0, ln.col="orange") fan(mm, type="interval", start=2013, anchor=net[time(net)==2012], alpha=0.5, style="spaghetti") ## End(Not run) ## ## Box Plots ## # sample every 21st day of theta_t th.mcmc21 <- th.mcmc[, seq(1, 945, 21)] plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxplot", frequency = 1/21) # additional arguments for boxplot plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxplot", frequency = 1/21, outline = FALSE, col = "red", notch = TRUE) ## ## Fan Boxes ## plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxfan", type = "interval", frequency = 1/21) # more space between boxes plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxfan", type = "interval", frequency = 1/21, space = 10) # overlay spaghetti fan(th.mcmc21, style = "spaghetti", frequency = 1/21, n.spag = 50, ln.col = "red", alpha=0.2)
## ## Basic Fan: fan0() ## fan0(th.mcmc) ## ## Basic Fan: fan() ## # empty plot plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc)*0.85) # add fan fan(th.mcmc) ## ## 20 or so examples of fan charts and ## spaghetti plots based on the th.mcmc object ## ## Make sure you have zoo, tsbugs, RColorBrewer and ## colorspace packages installed ## ## Not run: # demo("sv_fan", "fanplot") ## End(Not run) ## ## Fans for forecasted values ## ## Not run: #create time series net <- ts(ips$net, start=1975) # fit model library("forecast") m <- auto.arima(net) # plot in forecast package (limited customisation possible) plot(forecast(m, h=5)) # another plot in forecast (with some customisation, no # labels or anchoring possible at the moment) plot(forecast(m, h=5, level=c(50,80,95)), shadecols=rev(heat.colors(3))) # simulate future values mm <- matrix(NA, nrow=1000, ncol=5) for(i in 1:1000) mm[i,] <- simulate(m, nsim=5) # interval fan chart plot(net, xlim=c(1975,2020), ylim=c(-100,300)) fan(mm, type="interval", start=2013) # anchor fan chart plot(net, xlim=c(1975,2020), ylim=c(-100,300)) fan(mm, type="interval", start=2013, anchor=net[time(net)==2012]) # anchor spaghetti plot with underlying fan chart plot(net, xlim=c(1975,2020), ylim=c(-100,300)) fan(mm, type="interval", start=2013, anchor=net[time(net)==2012], alpha=0, ln.col="orange") fan(mm, type="interval", start=2013, anchor=net[time(net)==2012], alpha=0.5, style="spaghetti") ## End(Not run) ## ## Box Plots ## # sample every 21st day of theta_t th.mcmc21 <- th.mcmc[, seq(1, 945, 21)] plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxplot", frequency = 1/21) # additional arguments for boxplot plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxplot", frequency = 1/21, outline = FALSE, col = "red", notch = TRUE) ## ## Fan Boxes ## plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxfan", type = "interval", frequency = 1/21) # more space between boxes plot(NULL, xlim = c(1, 945), ylim = range(th.mcmc21)) fan(th.mcmc21, style = "boxfan", type = "interval", frequency = 1/21, space = 10) # overlay spaghetti fan(th.mcmc21, style = "spaghetti", frequency = 1/21, n.spag = 50, ln.col = "red", alpha=0.2)
Immigration, emigration and net migration flow counts (and their confidence intervals) for the UK from the International Passenger Survey (IPS) conducted by the Office of National Statistics. Data formatted from the 2012 release of the Long-Term International Migration Statistics.
data(ips)
data(ips)
A data frame with 38 observations on the following 7 variables.
year
a numeric vector
imm
a numeric vector
imm.ci
a numeric vector
emi
a numeric vector
emi.ci
a numeric vector
net
a numeric vector
net.ci
a numeric vector
Data differ slightly from the final adjusted migration estimates published by the ONS, that take account of certain types of migration that the IPS doesn't pick up, such as asylum seekers, people migrating for longer or shorter than they thought they would, and migration over land to and from Northern Ireland.
Annual statistics on flows of international migrants to and from the UK and England and Wales by the Office of National Statistics. Retrieved from "1.02 IPS Margins of Error, 1975-2012" spreadsheet.
Can not find copy of speadsheet on ONS website anymore, but there is a copy at https://github.com/guyabel/fanplot/tree/master/data-raw/
#standard plot net<-ts(ips$net, start=1975) plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci)) lines(net+ips$net.ci, lty=2, col="red") lines(net-ips$net.ci, lty=2, col="red") #simulate values ips.sim <- matrix(NA, nrow = 10000, ncol=length(net)) for (i in 1:length(net)) ips.sim[, i] <- rnorm(10000, mean = ips$net[i], sd =ips$net.ci[i]/1.96) #spaghetti plot plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n") fan(ips.sim, style="spaghetti", start=tsp(net)[1], n.spag=50) #box plot plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n") fan(ips.sim, style="boxplot", start=tsp(net)[1], llab=TRUE, outline=FALSE) #box fan plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n") fan(ips.sim, style="boxfan", type="interval", start=tsp(net)[1])
#standard plot net<-ts(ips$net, start=1975) plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci)) lines(net+ips$net.ci, lty=2, col="red") lines(net-ips$net.ci, lty=2, col="red") #simulate values ips.sim <- matrix(NA, nrow = 10000, ncol=length(net)) for (i in 1:length(net)) ips.sim[, i] <- rnorm(10000, mean = ips$net[i], sd =ips$net.ci[i]/1.96) #spaghetti plot plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n") fan(ips.sim, style="spaghetti", start=tsp(net)[1], n.spag=50) #box plot plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n") fan(ips.sim, style="boxplot", start=tsp(net)[1], llab=TRUE, outline=FALSE) #box fan plot(net, ylim=range(net-ips$net.ci, net+ips$net.ci), type = "n") fan(ips.sim, style="boxfan", type="interval", start=tsp(net)[1])
Pound-Dollar exchange rate data from 2nd October 1981 to 28th June 1985.
data(svpdx)
data(svpdx)
A data frame with 945 observations on the following 2 variables.
date
Date of observation.
pdx
Logarithm of returns for Pound-Dollar exchange.
Raw data on log returns.
http://www.econ.vu.nl/koopman/sv/svpdx.dat
Meyer, R. and J. Yu (2002). BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 3 (2), 198–215.
data(svpdx) # plot plot(svpdx$pdx, type = "l", xaxt = "n", xlab = "Time", ylab = "Return") # add x-axis svpdx$rdate<-format(svpdx$date, format = "%b %Y") mth <- unique(svpdx$rdate) qtr <- mth[seq(1,length(mth),3)] axis(1, at = match(qtr, svpdx$rdate), labels = qtr, cex.axis = 0.75) axis(1, at = match(mth, svpdx$rdate), labels = FALSE, tcl = -0.2)
data(svpdx) # plot plot(svpdx$pdx, type = "l", xaxt = "n", xlab = "Time", ylab = "Return") # add x-axis svpdx$rdate<-format(svpdx$date, format = "%b %Y") mth <- unique(svpdx$rdate) qtr <- mth[seq(1,length(mth),3)] axis(1, at = match(qtr, svpdx$rdate), labels = qtr, cex.axis = 0.75) axis(1, at = match(mth, svpdx$rdate), labels = FALSE, tcl = -0.2)
MCMC simulations of volatility obtained from the bugs
function in the R2OpenBUGS package. Estimates based on the stochastic volatility model for Pound-Dollar exchange rate data presented in the appendix of Meyer and Yu (2002). The MCMC was ran for 1100 simulations, thining to keep every 10th iteration, and treating the first 100 simulations as burn in.
Larger simulations (without thinning) can be obtained using the data (svpdx
) and the my1.txt BUGS file contained in this package, see example below.
See Meyer and Yu (2010) for model specification.
Meyer, R. and J. Yu (2002). BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 3 (2), 198–215.
Sturtz, S., U. Ligges, and A. Gelman (2005). R2WinBUGS: a package for running WinBUGS from R. Journal of Statistical Software 12 (3), 1–16.
# empty plot plot(NULL, type = "n", xlim = c(1, 945), ylim = range(th.mcmc), ylab = "Theta") # add fan fan(th.mcmc) ## ##Create your own (longer) MCMC sample: ## ## Not run: # library(tsbugs) # library(R2OpenBUGS) # # write model file: # my1.bug <- dget(system.file("model", "my1.R", package = "fanplot")) # write.model(my1.bug, "my1.txt") # # take a look: # file.show("my1.txt") # # run openbugs, remember to include theta as a param otherwise will not # # have anything to plot # my1.mcmc<-bugs(data=list(n=length(svpdx$pdx),y=svpdx$pdx), # inits=list(list(phistar=0.975,mu=0,itau2=50)), # param=c("mu","phi","tau","theta"), # model="my1.txt", # n.iter=11000, n.burnin=1000, n.chains=1) # # th.mcmc <- my1.mcmc$sims.list$theta ## End(Not run)
# empty plot plot(NULL, type = "n", xlim = c(1, 945), ylim = range(th.mcmc), ylab = "Theta") # add fan fan(th.mcmc) ## ##Create your own (longer) MCMC sample: ## ## Not run: # library(tsbugs) # library(R2OpenBUGS) # # write model file: # my1.bug <- dget(system.file("model", "my1.R", package = "fanplot")) # write.model(my1.bug, "my1.txt") # # take a look: # file.show("my1.txt") # # run openbugs, remember to include theta as a param otherwise will not # # have anything to plot # my1.mcmc<-bugs(data=list(n=length(svpdx$pdx),y=svpdx$pdx), # inits=list(list(phistar=0.975,mu=0,itau2=50)), # param=c("mu","phi","tau","theta"), # model="my1.txt", # n.iter=11000, n.burnin=1000, n.chains=1) # # th.mcmc <- my1.mcmc$sims.list$theta ## End(Not run)